3.1071 \(\int \frac {(d+e x)^4}{(c d^2+2 c d e x+c e^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=39 \[ \frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c^2 e} \]

[Out]

1/2*(e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/c^2/e

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {642, 609} \[ \frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c^2 e} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^4/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2),x]

[Out]

((d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])/(2*c^2*e)

Rule 609

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p + 1
)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && NeQ[p, -2^(-1)]

Rule 642

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx &=\frac {\int \sqrt {c d^2+2 c d e x+c e^2 x^2} \, dx}{c^2}\\ &=\frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c^2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 33, normalized size = 0.85 \[ \frac {x (d+e x) (2 d+e x)}{2 c \sqrt {c (d+e x)^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^4/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2),x]

[Out]

(x*(d + e*x)*(2*d + e*x))/(2*c*Sqrt[c*(d + e*x)^2])

________________________________________________________________________________________

fricas [A]  time = 1.27, size = 48, normalized size = 1.23 \[ \frac {\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} {\left (e x^{2} + 2 \, d x\right )}}{2 \, {\left (c^{2} e x + c^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="fricas")

[Out]

1/2*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*(e*x^2 + 2*d*x)/(c^2*e*x + c^2*d)

________________________________________________________________________________________

giac [A]  time = 0.53, size = 65, normalized size = 1.67 \[ \frac {4 \, C_{0} d e^{\left (-1\right )} - \frac {2 \, d^{3} e^{\left (-1\right )}}{c} + {\left (x {\left (\frac {x e^{2}}{c} + \frac {3 \, d e}{c}\right )} + 4 \, C_{0}\right )} x}{2 \, \sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="giac")

[Out]

1/2*(4*C_0*d*e^(-1) - 2*d^3*e^(-1)/c + (x*(x*e^2/c + 3*d*e/c) + 4*C_0)*x)/sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 40, normalized size = 1.03 \[ \frac {\left (e x +2 d \right ) \left (e x +d \right )^{3} x}{2 \left (c \,e^{2} x^{2}+2 c d e x +c \,d^{2}\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x)

[Out]

1/2*x*(e*x+2*d)*(e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)

________________________________________________________________________________________

maxima [B]  time = 1.50, size = 99, normalized size = 2.54 \[ \frac {e^{2} x^{3}}{2 \, \sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c} + \frac {3 \, d e x^{2}}{2 \, \sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c} - \frac {d^{3}}{\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="maxima")

[Out]

1/2*e^2*x^3/(sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c) + 3/2*d*e*x^2/(sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c) - d^
3/(sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c*e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {{\left (d+e\,x\right )}^4}{{\left (c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^4/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2),x)

[Out]

int((d + e*x)^4/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x\right )^{4}}{\left (c \left (d + e x\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(3/2),x)

[Out]

Integral((d + e*x)**4/(c*(d + e*x)**2)**(3/2), x)

________________________________________________________________________________________